
INTEGRATED CIRCUITS

Product data

2001 Sep 28

File under Integrated Ciruits ICL03

GTLPH16612

FEATURES

- 18-bit bidirectional bus interface
- Translates between GTLP logic levels (B ports) and LVTTL/TTL logic levels (A ports)
- Edge rate control circuitry on the Bn outputs rising/falling edges to minimize system noise in a multipoint backplane environment
- 5 V I/O tolerant on the LVTTL side
- No bus current loading when LVTTL output is tied to 5 V bus
- 3-State buffers
- Output capability: +64 mA/-32 mA on the LVTTL side; +40 mA on the GTLP side
- LVTTL input levels on control pins
- Power-up reset
- Power-up 3-State
- Positive edge triggered clock inputs
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 750 V (Bn I/O exceeds 1000 V) CDM per JESD22-C101

DESCRIPTION

The GTLPH16612 is a high-performance BiCMOS product designed for V_{CC} operation at 3.3V with I/O compatibility up to 5 V.

The GTLPH16612 is unique in that pin 50 is a no connect and this device can be used as a replacement device in sockets where pin 50 is 3.3/5 V V_{CC} or 3.3 V BIAS V_{CC}.

This device is an 18-bit universal transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable (OEAB and OEBA), latch enable (LEAB and LEBA), and clock (CPAB and CPBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is High. When LEAB is Low, the A data is latched if CPAB is held at a High or Low logic level. If LEAB is Low, the A-bus data is stored in the latch/flip-flop on the Low-to-High transition of CPAB. When OEAB is Low, the outputs are active. When OEAB is High, the outputs are in the high-impedance state. The clocks can be controlled with the clock-enable inputs (CEBA/CEAB).

Data flow for B-to-A is similar to that of A-to-B but uses OEBA, LEBA and CPBA.

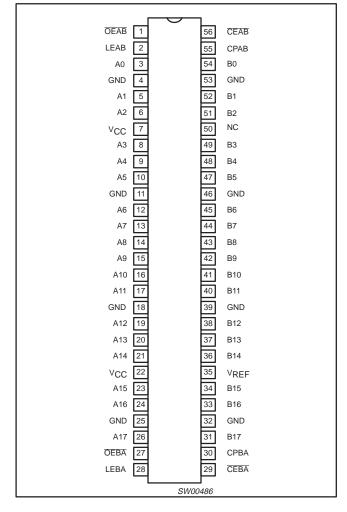
TYPICAL

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25 °C
t _{PLH}	Propagation delay	C ₁ = 50 pF

QUICK REFERENCE DATA

STMBOL	PARAMETER	T _{amb} = 25 ℃	3.3 V	UNIT
t _{PLH} t _{PHL}	Propagation delay An to Bn or Bn to An	C _L = 50 pF	1.9	ns
C _{IN}	Input capacitance (Control pins)	$V_I = 0 V \text{ or } V_{CC}$	4	pF
C _{I/O}	An I/O pin capacitance	$V_{I/O} = 0 V \text{ or } V_{CC}$	9	pF
C _{I/O}	Bn I/O pin capacitance	$V_{I/O} = 0 V \text{ or } 1.5 V$	5.3	pF
I _{CCZ}	Total supply current	Outputs disabled	12	mA

ORDERING INFORMATION


PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
56-Pin Plastic SSOP	–40 to +85 °C	GTLPH16612DL	SOT371-1
56-Pin Plastic TSSOP	–40 to +85 °C	GTLPH16612DGG	SOT364-1

NOTE:

1. Standard packing quantities and other packaging data is available at www.philipslogic.com/support/packages.

GTLPH16612

PIN CONFIGURATION

PIN DESCRIPTION

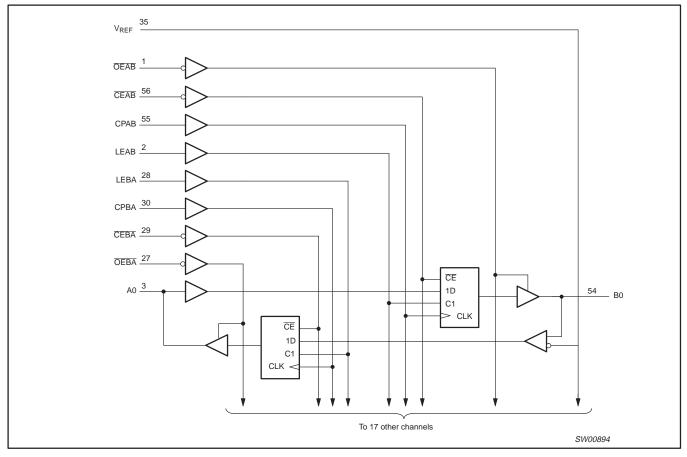
PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 27	OEAB/OEBA	A-to-B/ B-to-A Output enable input (active Low)
29, 56	CEBA/CEAB	B-to-A/A-to-B clock enable
2, 28	LEAB/LEBA	A-to-B/B-to-A Latch enable input
55, 30	CPAB/CPBA	A-to-B/B-to-A Clock input (active rising edge)
3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26	A0-A17	Data inputs/outputs (A side)
54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31	B0-B17	Data inputs/outputs (B side)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22	V _{CC}	Positive supply voltage
35	V _{REF}	GTLP reference voltage
50	NC	No connect

FUNCTION TABLE

	11	NPUTS	OUTPUT			
CEAB	OEAB	LEAB	CPAB	Α	В	MODE
Х	Н	Х	Х	Х	Z	Isolation
L	L	L	\uparrow	L	L	Clocked storage of A data
L	L	L	\uparrow	Н	Н	Clocked Storage of A data
Х	L	Н	Х	L	L	Transparent
Х	L	Н	Х	Н	Н	nansparent
L	L	L	Н	Х	Β _Ο ±	Latched storage of A data
L	L	L	L	Х	В _О §	Latoned storage of A data
Н	L	L	Х	Х	B _O ±	Clock inhibit

X = Don't care

H = High voltage level


L = Low voltage level $\uparrow = Low to High$

Z = High impedance "off" state

t = A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, CPBA, and CEBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

 \pm = Output level before the indicated steady-state input conditions were established. § = Output level before the indicated steady-state input conditions were established, provided that CPAB was Low before LEAB went Low.

LOGIC SYMBOL (Positive Logic)

GTLPH16612

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +4.6	V	
I _{IK}	DC input diode current	V _I < 0 V	-50	mA	
V	DC input voltage ³	A port	-0.5 to +7.0	V	
VI		B port	-0.5 to +4.6] `	
I _{OK}	DC output diode current	V _O < 0 V; A port	-50	mA	
M	DC output voltage ³	Output in Off or High state; A port	-0.5 to +7.0	V	
V _{OUT}	De ouiput voltages	Output in Off or High state; B port	-0.5 to +4.6	V	
	Current into any output in the LOW state	A port	128	mA	
IOL	Current into any output in the LOW state	B port	80	mA	
I _{ОН}	Current into any output in the HIGH state	A port	-64	mA	
T _{stg}	Storage temperature range		-65 to +150	°C	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

	DADAMETED	TEAT CONDITIONS	3.3	3.3V RANGE LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{CC}	DC supply voltage		3.0	3.3	3.6	V	
M	Tormination weltand	GTL	1.14	1.2	1.26	v	
V_{TT}	Termination voltage	GTLP	1.35	1.5	1.65	1 [×]	
N/		GTL	0.74	0.8	0.87	v	
V_{REF}	GTL reference voltage	GTLP	0.9	1	1.10	1 [×]	
N/		B port	0	V _{TT}	Note 3	v	
VI	Input voltage	Except B port	0	V _{CC}	5.5	1 ^v	
M		B port	V _{REF} +50mV	_	—	V	
VIH	HIGH-level input voltage	Except B port	2.0	_	—	V	
M		B port	—	_	V _{REF} -50mV	v	
VIL	LOW-level input voltage	Except A port	—	_	0.8	1 [×]	
I _{OH}	HIGH-level output current	A port	—	_	-32	mA	
		B port, GTL	—	_	32	mA	
I _{OL}	LOW-level output current	B port, GTLP	—	—	40	mA	
		A port	—	_	64	mA	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	—		10	ns/V	
$\Delta t / \Delta V_{CC}$	Power-up rate		20	_	—	μs/V	
T _{amb}	Operating free-air temperature range		-40		+85	°C	

RECOMMENDED OPERATING CONDITIONS^{1, 2}

NOTES:

1. Normal connection sequence is GND first; V_{CC} , I/O, control inputs, V_{TT} and V_{REF} (any order) last.

 V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}.
V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the DC recommended I_{OL} ratings are not exceeded and the absolute max V_I rating is not exceeded.

Product data

DC ELECTRICAL CHARACTERISTICS (3.3 V \pm 0.3 V RANGE)

						LIMITS		
SYMBOL	PARA	METER	TEST CONDITIONS		Temp =	UNIT		
					MIN	TYP ¹	MAX	
V _{IK}	Input clamp vo	Itage	V _{CC} = 3.0 V; I _{IK} = -18 mA		_	-0.85	-1.2	V
M	Link laval auto		V_{CC} = 3.0 to 3.6 V; I_{OH} = -100 μ A	A sort	V _{CC} -0.2	V _{CC}	-	v
V _{OH}	High-level outp	out voltage	V _{CC} = 3.0 V; I _{OH} = -32 mA	A port	2.0	2.3	-	
			V _{CC} = 3.0 V; I _{OL} = 100 μA		—	0.07	0.2	
			V _{CC} = 3.0 V; I _{OL} = 16 mA) 	—	0.25	0.4	
V _{OL}	Low-level outp	ut voltage	V _{CC} = 3.0 V; I _{OL} = 32 mA	A port	—	0.3	0.5	1
			V _{CC} = 3.0 V; I _{OL} = 64 mA	1	—	0.4	0.55	1
			V _{CC} = 3.0 V; I _{OL} = 40 mA	B port	—	0.4	0.5	V
			V_{CC} = 3.6 V; V_{I} = V_{CC} or GND	Control size	—	0.1	±1	
			$V_{CC} = 0 \text{ or } 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$	Control pins	—	0.1	10	μA
	lanut la alvana i		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$		—	0.1	20	
łı	Input leakage current		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC}$	I/O Data pins ⁴ A port	—	0.5	10	μA
			$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 0 \text{ V}$		—	0.1	-5	
			V_{CC} = 3.6 V; V_{I} = V_{TT} or GND	B port	—	—	±5	μA
I _{OFF}	Output off current		$V_{CC} = 0$ V; V_{I} or $V_{O} = 0$ to 4.5 V	-	—	0.1	±100	μA
	Due Held sum		$V_{CC} = 3 V; V_1 = 0.8 V$		75	130	-	
HOLD	Bus Hold curre	ent, A outputs	V _{CC} = 3 V; V ₁ = 2.0 V		-75	-140	—	μA
I_{EX}	Current into an High state whe		$V_{O} = 5.5 \text{ V}; V_{CC} = 3.0 \text{ V}$	A port	-	10	125	μA
I _{PU/PD}	Power up/down	n 3-State	$\frac{V_{CC}}{OE} \le 1.2 \text{ V}; \text{ V}_{O} = 0.5 \text{ V to } \text{ V}_{CC}; \text{ V}_{OE} = \text{Don't care}$	= GND or V_{CC}	-	1.0	±100	μA
I _{CCH}	A-Port		Outputs high		—	5.0	9.0	
I _{CCL}	A-Pon		Outputs low		—	10.5	18.5	
I _{CCZ} 5		V _{CC} = 3.6 V	Disabled	$V_{I} = GND \text{ or } V_{CC};$ $I_{O} = 0$	—	6.0	11.5	mA
I _{CCH}	B-Port		Outputs high		—	9.7	17.5	
I _{CCL}	D-FUIL		Outputs low		—	7.0	12.0	
ΔI_{CC}	Additional supplication of the second	oly current per	V_{CC} = 3 V to 3.6 V; One input at V Other inputs at V _{CC} or GND	_{CC} –0.6 V,	-	0.04	0.2	mA
C _{IN}	Control pins ca	pacitance	$V_I = 0 V \text{ or } V_{CC}$		—	4	—	pF
C _{I/O}	An I/O pin capa	acitance	$V_{I/O} = 0 V \text{ or } V_{CC}$		—	9.0	—	pF
C _{I/O}	Bn I/O pin capa	acitance	V _{I/O} = 0 V or 1.5 V		—	5.3	7.3 ⁶	pF

NOTES:

1. All typical values are at $V_{CC} = 3.3$ V and $T_{amb} = 25$ °C. 2. This is the increase in supply current for each LVTTL input at the specified voltage level other than V_{CC} or GND 3. This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 msec. From $V_{CC} = 1.2$ V to $V_{CC} = 3.3$ V ± 0.3 V a transition time of 100 µsec is permitted. This parameter is valid for $T_{amb} = 25$ °C only.

4. Unused pins at V_{CC} or GND.

5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground. 6. The maximum Bn I/O pin capacitance is based on simulation data.

AC CHARACTERISTICS (A PORT)

GND = 0 V; t_r = t_f = 2.5 ns; C_L = 50 pF; R_L = 500 Ω ; T_{amb} = -40 to +85 °C.

				GTLP		
	(GTLPH16612 An Port	V _{CO}	c = 3.3 V ±0	.3 V	1
				V _{REF} = 1.0 \	/	UNIT
SYMBOL	PARAMETER	WAVEFORM	MIN	TYP ¹	MAX	
F _{max}			250	290	—	MHz
t _{PLH}	Bn to An	2	1.5	2.6	5.5	ns
t _{PHL}	Bn to An	2	2.6	4.3	6.5	ns
t _{PLH}	LEBA to An	3	1.6	3.0	4.9	ns
t _{PHL}	LEBA to An	3	2.0	3.0	4.5	ns
t _{PLH}	CPBA to An	1	1.1	2.7	4.9	ns
t _{PHL}	CPBA to An	1	1.8	3.0	4.6	ns
t _{PZH}	OEBA to An	5	1.5	4.3	6.2	ns
t _{PHZ}	OEBA to An	5	1.4	3.6	4.8	ns
t _{PZL}	OEBA to An	6	1.5	3.8	6.2	ns
t _{PLZ}	OEBA to An	6	1.0	2.6	5.5	ns

NOTE:

1. Typical values are at V_{CC} = 3.3 V, T_{amb} = +25 °C.

AC CHARACTERISTICS (B PORT)

GND = 0 V; $t_r = t_f = 2.5 \text{ ns}$; $C_L = 30 \text{ pF}$; $R_L = 25 \Omega$; $T_{amb} = -40 \text{ to } +85 \text{ °C}$.

				GTLP		
	G	V _{CO}	1			
			,	V _{REF} = 1.0 \	/	UNIT
SYMBOL	PARAMETER	WAVEFORM	MIN	TYP ¹	MAX	1
F _{max}			250	270	_	MHz
t _{PLH}	An to Bn	2	1.8	4.8	9.0	ns
t _{PHL}	An to Bn	2	1.0	3.9	8.2	ns
t _{PLH}	LEAB to Bn	3	1.9	4.6	8.4	ns
t _{PHL}	LEAB to Bn	3	1.9	4.5	8.0	ns
t _{PLH}	CPAB to Bn	1	2.7	5.1	8.7	ns
t _{PHL}	CPAB to Bn	1	2.2	4.9	8.6	ns
t _{PLH}	OEAB to Bn	7	1.4	4.2	8.3	ns
t _{PHL}	OEAB to Bn	7	1.5	5.0	9.5	ns
t _{rise}	Transition time B outputs	20% to 80%	—	3.1	—	ns
t _{fall}	Transition time B outputs	20% to 80%	_	4.6	—	ns

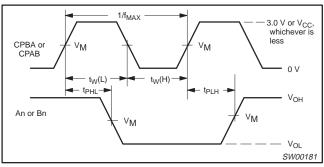
NOTE:

1. Typical values are at V_{CC} = 3.3 V, T_{amb} = +25 °C.

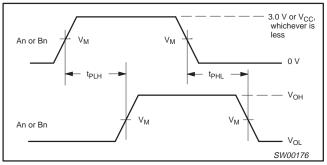
GTLPH16612

AC SETUP REQUIREMENTS (3.3 V ±0.3 V RANGE)

A Port: GND = 0 V; Input $t_r = t_f = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$; $T_{amb} = -40 \text{ to } +85 \text{ °C}$; $V_{REF} = 0.8 \text{ V or } 1.0 \text{ V}$. B Port: GND = 0 V; Input $t_r = t_f = 2.5 \text{ ns}$; $C_L = 30 \text{ pF}$; $R_L = 25 \Omega$; $V_{REF} = 0.8 \text{ V or } 1.0 \text{ V}$.

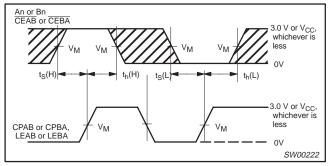

					LIMITS		
SYMBOL	DESCRIPTION	PARAMETER	WAVEFORM	Vcc	; = 3.3 V ±0	.3 V	UNIT
				MIN	TYP	MAX	1
t _w (H)	Pulse duration	LEAB or LEBA	3	1.0	—	—	ns
t _w (H or L)	Pulse duration	CPAB or CPBA	4	2.5	—	—	ns
t _s (H or L)	Setup time	An before CPAB rising edge	4	2.0	—	—	ns
t _s (H)	Setup time	Bn before CPBA rising edge	4	2.5	—	—	ns
t _s (L)	Setup time	Bn before CPBA rising edge	4	3.1	—	—	ns
t _s (H or L)	Setup time	An before LEAB falling edge	4	0.5	—	—	ns
t _s (H or L)	Setup time	Bn before LEBA falling edge	4	2.5	—	—	ns
t _s (L)	Setup time	CEAB before CPAB rising edge	4	0	—	—	ns
t _s (L)	Setup time	CEBA before CPBA rising edge	4	0	—	—	ns
t _h (H or L)	Hold time	An after CPAB rising edge	4	0	—	—	ns
t _h (H or L)	Hold time	Bn after CPBA rising edge	4	0	—	—	ns
t _h (H or L)	Hold time	An after LEAB falling edge	4	0.5	—	—	ns
t _h (H or L)	Hold time	Bn after LEBA falling edge	4	0	—	—	ns
t _h (H)	Hold time	CEAB after CPAB rising edge	4	1.1	—	—	ns
t _h (H)	Hold time	CEBA after CPBA rising edge	4	1.1	—	—	ns

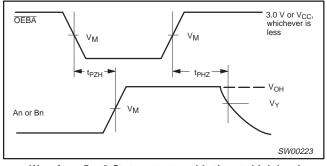
Product data

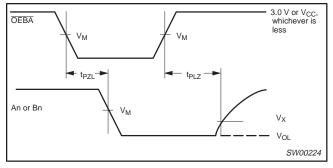

GTLPH16612

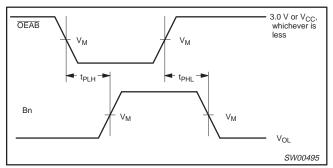
AC WAVEFORMS


 $V_M = 1.5 \text{ V at } V_{CC} \ge 3.0 \text{ V}.$ $V_M = 1.5 \text{ V}$ for A ports and control pins; $V_M = 1.0 \text{ V}$ for B ports in GTLP mode. $V_X = V_{OL} + 0.3 \text{ V}$ at $V_{CC} \ge 3.0 \text{ V}.$ $V_Y = V_{OH} - 0.3 \text{ V}$ at $V_{CC} \ge 3.0 \text{ V}.$


Waveform 1. Propagation delay, clock input to output, clock pulse width, and maximum clock frequency

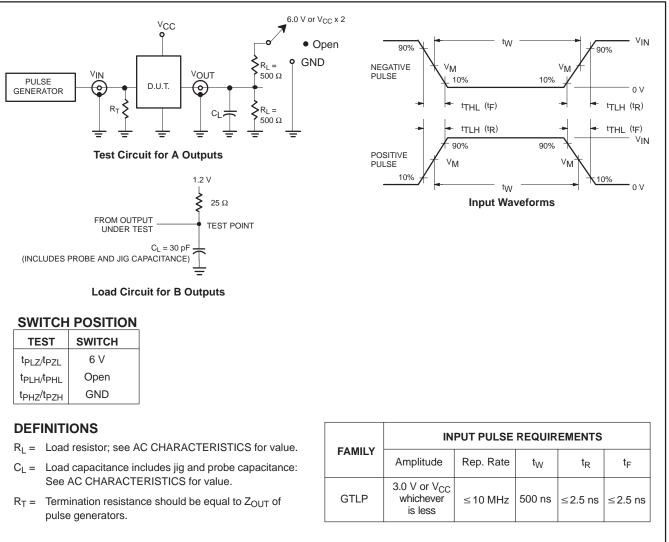

Waveform 2. Propagation delay, transparent mode


Waveform 3. Propagation delay, enable to output, and enable pulse width


Waveform 4. Data setup and hold times

Waveform 5. 3-State output enable time to high level and output disable time from high level

Waveform 6. 3-State output enable time to low level and output disable time from low level

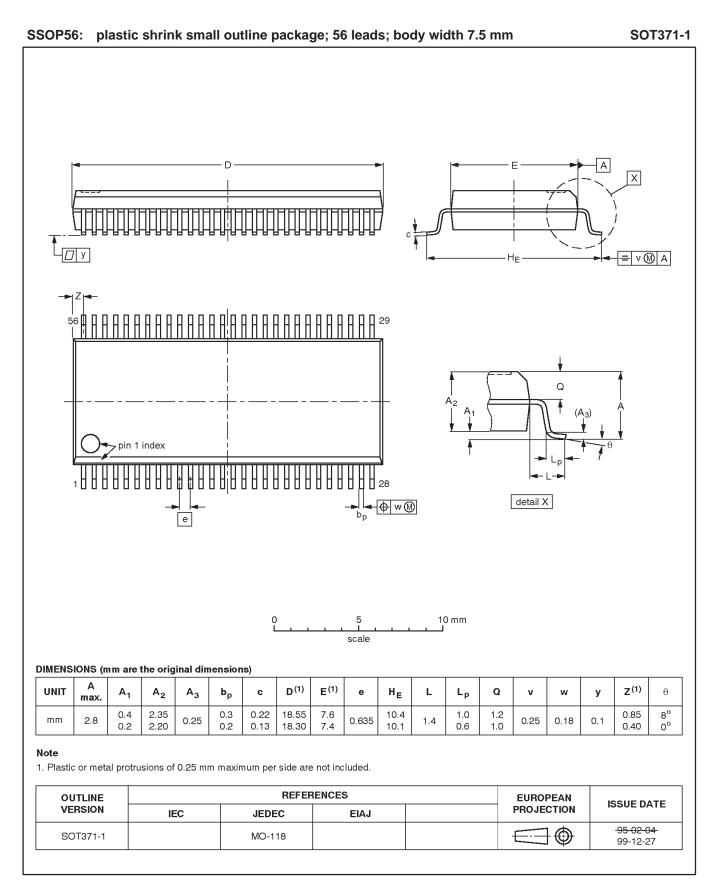


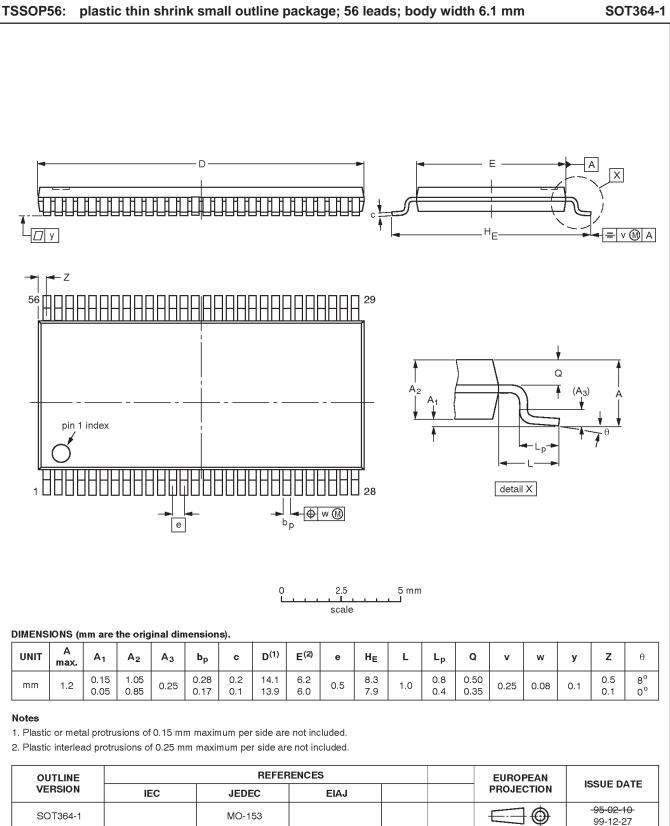
Waveform 7. Output enable time on open collector output with pull-up

Product data

GTLPH16612

TEST CIRCUIT




SW00255

GTLPH16612

Product data

NOTES

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2001 All rights reserved. Printed in U.S.A.

Date of release: 09-01

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 08911

Let's make things better.

